34 research outputs found

    Unsupervised Learning of Style-sensitive Word Vectors

    Full text link
    This paper presents the first study aimed at capturing stylistic similarity between words in an unsupervised manner. We propose extending the continuous bag of words (CBOW) model (Mikolov et al., 2013) to learn style-sensitive word vectors using a wider context window under the assumption that the style of all the words in an utterance is consistent. In addition, we introduce a novel task to predict lexical stylistic similarity and to create a benchmark dataset for this task. Our experiment with this dataset supports our assumption and demonstrates that the proposed extensions contribute to the acquisition of style-sensitive word embeddings.Comment: 7 pages, Accepted at The 56th Annual Meeting of the Association for Computational Linguistics (ACL 2018

    Norm of Word Embedding Encodes Information Gain

    Full text link
    Distributed representations of words encode lexical semantic information, but what type of information is encoded and how? Focusing on the skip-gram with negative-sampling method, we found that the squared norm of static word embedding encodes the information gain conveyed by the word; the information gain is defined by the Kullback-Leibler divergence of the co-occurrence distribution of the word to the unigram distribution. Our findings are explained by the theoretical framework of the exponential family of probability distributions and confirmed through precise experiments that remove spurious correlations arising from word frequency. This theory also extends to contextualized word embeddings in language models or any neural networks with the softmax output layer. We also demonstrate that both the KL divergence and the squared norm of embedding provide a useful metric of the informativeness of a word in tasks such as keyword extraction, proper-noun discrimination, and hypernym discrimination.Comment: 23 pages, EMNLP 202

    Improving word mover's distance by leveraging self-attention matrix

    Full text link
    Measuring the semantic similarity between two sentences is still an important task. The word mover's distance (WMD) computes the similarity via the optimal alignment between the sets of word embeddings. However, WMD does not utilize word order, making it challenging to distinguish sentences with significant overlaps of similar words, even if they are semantically very different. Here, we attempt to improve WMD by incorporating the sentence structure represented by BERT's self-attention matrix (SAM). The proposed method is based on the Fused Gromov-Wasserstein distance, which simultaneously considers the similarity of the word embedding and the SAM for calculating the optimal transport between two sentences. Experiments demonstrate the proposed method enhances WMD and its variants in paraphrase identification with near-equivalent performance in semantic textual similarity. Our code is available at \url{https://github.com/ymgw55/WSMD}.Comment: 24 pages, accepted to EMNLP 2023 Finding

    Beyond Vectors: Subspace Representations for Set Operations of Embeddings

    Full text link
    In natural language processing (NLP), the role of embeddings in representing linguistic semantics is crucial. Despite the prevalence of vector representations in embedding sets, they exhibit limitations in expressiveness and lack comprehensive set operations. To address this, we attempt to formulate and apply sets and their operations within pre-trained embedding spaces. Inspired by quantum logic, we propose to go beyond the conventional vector set representation with our novel subspace-based approach. This methodology constructs subspaces using pre-trained embedding sets, effectively preserving semantic nuances previously overlooked, and consequently consistently improving performance in downstream tasks

    Transformer Language Models Handle Word Frequency in Prediction Head

    Full text link
    Prediction head is a crucial component of Transformer language models. Despite its direct impact on prediction, this component has often been overlooked in analyzing Transformers. In this study, we investigate the inner workings of the prediction head, specifically focusing on bias parameters. Our experiments with BERT and GPT-2 models reveal that the biases in their word prediction heads play a significant role in the models' ability to reflect word frequency in a corpus, aligning with the logit adjustment method commonly used in long-tailed learning. We also quantify the effect of controlling the biases in practical auto-regressive text generation scenarios; under a particular setting, more diverse text can be generated without compromising text quality.Comment: 11 pages, 12 figures, accepted to ACL 2023 Findings (short paper

    Contrastive Learning-based Sentence Encoders Implicitly Weight Informative Words

    Full text link
    The performance of sentence encoders can be significantly improved through the simple practice of fine-tuning using contrastive loss. A natural question arises: what characteristics do models acquire during contrastive learning? This paper theoretically and experimentally shows that contrastive-based sentence encoders implicitly weight words based on information-theoretic quantities; that is, more informative words receive greater weight, while others receive less. The theory states that, in the lower bound of the optimal value of the contrastive learning objective, the norm of word embedding reflects the information gain associated with the distribution of surrounding words. We also conduct comprehensive experiments using various models, multiple datasets, two methods to measure the implicit weighting of models (Integrated Gradients and SHAP), and two information-theoretic quantities (information gain and self-information). The results provide empirical evidence that contrastive fine-tuning emphasizes informative words.Comment: 16 pages, 6 figures, accepted to EMNLP 2023 Findings (short paper
    corecore